

Introduction

 Third most common cause of large bowel obstruct in the United States (after colon cancer and diverticulitis)

WESTERN MICHIGAN UNIVERSITY

Homer Stryker M.D.

- More common in developing countries (from 3-5% up 50%)
- Three operative approaches are available: resection and anastomosis, resection and anastomosis with Diverting Ileostomy (RS-PADI), and resection with colostomy (or Hartmann procedure (HP))
 - Hartmann is current gold standard and traditionally viewed as safer, but RS-PADI associated with decrease overall complications
- Comparative study for 30-day outcomes of RS-PAE Hartmann procedure

Methods

- Retrospective review
- ACS-NSQIP database from 2005-2017
- Diagnosis of sigmoid volvulus who underwent RS-PADI and HP
- Propensity Score Matching (PSM) to balance sample size and baseline covariates (demographic, comorbidities, preoperative data)
- Analyzed 30-day morbidity/mortality, operative time, length of stay, reoperation, and readmission

Limitations

- Degree of contamination controlled for by propensity matching, however surgeons are more likely to choose Hartmann procedure if heavy contamination or unstable patient.
- There is still potential for unobservable bias
- Small sample size
- Some patients may have benefited from endoscopic detorsion and may have undergone RS-PADI on a more elective basis

Hartmann Procedure or Anastomosis With Diversion For Sigmoid Colon Volvulus? Daniel VanZweden, MD; Conor Dillon, DO; Saad Shebrain, MD

Department of General Surgery, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI

		Results				
tion	1511 patients with Hartmann procedure, 57 with RS-PADI. After PSM 55 pagroup.					
n ta	30 Day Outcomes	HP (n=55)	RS-PADI (n=55)	Total (N=110)	p-value	
ριο	Unplanned Reoperation	4 (7.5)	3 (5.3)	7 (6.4)	0.624	
on	Any Readmission	6 (12.8)	8 (17.0)	14 (14.9)	0.562	
	30-Days Mortality	2 (3.8)	3 (5.3)	5 (4.5)	0.708	
end	Serious morbidity	15 (28.3)	17 (29.8)	32 (29.1)	0.861	
	Minor morbidity	16 (30.2)	17 (29.8)	33 (30.0)	0.967	
	Overall Morbidity	24 (45.3)	27 (47.4)	51 (46.4)	0.827	
sed	Operative Time, mean (SD)	112 (47)	116 (53)	114 (50)	0.688	
	Length of hospital stay, mean (SD)	16 (11.7)	14.8 (14)	15.4 (13)	0.631	
DI vs.	LOS, median (IQR)	11 (8, 22.5)	11 (8, 16)	11 (8, 20.3)	0.563	
	Secondary Results					

30 Day Secondary Outcomes

Superficial surgical site infection

Organ Space SSI Wound Disrupt Pneumonia **Unplanned Intubation Pulmonary Embolism** Ventilator > 48 Hours **Progressive Renal Insufficiency**

Acute Renal Fail Urinary Tract Infection Cardiac Arrest Requiring CPR Myocardial Infarction Bleeding Transfusions DVT/Thrombophlebitis Sepsis Septic Shock

volvulus.

NCCO II UIUI Y INCOUITO

HP	RS-PADI	Total	p-value
(n=55)	(n=55)	(N=110)	
3 (5.7)	3 (5.3)	6 (5.5)	0.927
2 (3.8)	5 (8.8)	7 (6.4)	0.283
4 (7.5)	0 (0.0)	4 (3.6)	0.035
7 (13.2)	12 (21.1)	19 (17.3)	0.277
3 (5.7)	6 (10.5)	9 (8.2)	0.352
1 (1.9)	0 (0.0)	1 (0.9)	0.298
7 (13.2)	8 (14.0)	15 (13.6)	0.899
2 (3.8)	1 (1.8)	3 (2.7)	0.516
0 (0.0)	1 (1.8)	1 (0.9)	0.333
5 (9.4)	2 (3.5)	7 (6.4)	0.203
1 (1.9)	2 (3.5)	3 (2.7)	0.602
2 (3.8)	1 (1.8)	3 (2.7)	0.516
1 (1.9)	5 (8.8)	6 (5.5)	0.112
1 (1.9)	0 (0.0)	1 (0.9)	0.298
3 (5.7)	3 (5.3)	6 (5.5)	0.927
5 (9.4)	5 (8.8)	10 (9.1)	0.904

Conclusion

• In this study, RS-PADI has similar 30-day postoperative outcomes compared to HP. • Given the decreased morbidity of subsequent loop ileostomy takedown compared with a Hartmann's reversal, this procedure should be given consideration in the management of acute sigmoid

itients in each